US009277168B2

a2 United States Patent

George et al.

US 9,277,168 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SUBFRAME LEVEL LATENCY
DE-INTERLACING METHOD AND
APPARATUS

(75) Inventors: Rex George, Round Rock, TX (US);

Daniel P. Shimizu, Hillsborough, CA

(US); Sateesh Lagudu, Hyderabad (IN);

Niranjan P. Dasiga, Secunderabad (IN);

Sai Kishore Reddipalli, Hyderabad (IN)
(73) Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 58 days.

@
(22)

Appl. No.: 13/549,940
Filed: Jul. 16, 2012

Prior Publication Data

US 2014/0002733 Al Jan. 2, 2014

(65)

(30) Foreign Application Priority Data

Jun. 29,2012 (IN) oo 2605/CHE/2012

(51) Imt.ClL
HO04N 7/01
HO4N 11720
HO4N 5/14
U.S. CL
CPCcccc... HO04N 7/012 (2013.01); HO4N 7/014
(2013.01); HO4N 5/144 (2013.01)
Field of Classification Search
USPC .ot 348/452, 669, 489, E7.007
See application file for complete search history.

(2006.01)
(2006.01)
(2006.01)
(52)

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

4/2002 Chun et al.
1/2004 Callway

6,381,277 Bl
6,680,752 Bl

6,970,206 B1 11/2005 Swan
7,271,841 B2 9/2007 Swan
7,990,471 Bl 8/2011 Otobe et al.
2002/0171759 Al 112002 Handjojo et al.
2005/0078214 Al* 4/2005 Wongcccceeveun. HO4N 7/014
348/452
2005/0219411 Al 10/2005 Chang
2006/0018383 Al* 1/2006 Shi ...ccccoevvvnveennee GO6T 7/2006
375/240.16
2008/0246884 Al* 10/2008 Chungc.c..... HO4AN 5/145
348/699
(Continued)
OTHER PUBLICATIONS

DVDO iScan VP50—High Definition Video Processor, at least as
early as Jun. 2012, downloaded from http://www.lsk.hu/products/
dvdo/data/iscanvp50.pdf, 2 pgs.

(Continued)

Primary Examiner — Jefterey Harold
Assistant Examiner — Omer Khalid
(74) Attorney, Agent, or Firm — Faegre Baker Daniels LLP

57 ABSTRACT

A new motion adaptive deinterlacing method and apparatus
detects motion corresponding to a pixel to be interpolated.
The method and apparatus generates a subframe level motion
map based on at least a portion of a current field and at least
a portion of a plurality of previous fields. Based on the gen-
erated subframe level motion map, the apparatus and method
generates a plurality of motion vectors associated with the
subframe level motion map by applying a plurality of motion
masks, associated with the pixel to be interpolated, to the
subframe level motion map. The apparatus and method fur-
ther generates deinterlaced content by adaptively interpolat-
ing the pixel to be interpolated for the current field based on
the plurality of motion vectors produced by applying a plu-
rality of motion masks to the subframe level motion map.

25 Claims, 15 Drawing Sheets

ABIH AJBIHIN

MOTICN MASKS

US 9,277,168 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
2008/0260021 Al

2009/0086093 Al
2010/0110304 Al*

10/2008 Sung

4/2009 Wei

5/2010 Chenccoovinnn. HO4N 5/21
348/701

2010/0309372 Al 12/2010 Zhong

OTHER PUBLICATIONS
VDINT-MA Motion Adaptive Deinterlacer Core, at least as early as

Jun. 2012, downloaded from http://www..cast-inc.com/ip-cores/
video/vdint-ma/, 2 pgs.

ABT1030 Video Processor, at least as early as Jun. 2012, downloaded
from http://www..semiconductorstore.com/pdf/newsite/SiliconIm-
age/ABT1030.pdf, 2 pgs.

Altera High Definition Video Processor Design UDX4, Jun. 2011,
downloaded from http://www..altera.com/literature/an/an627 .pdf, in
Jun. 2011, 39 pgs.

AMD Press Release—downloaded from http://www..amd.com/us/
press-releases/Pages/amd-and-nintendo-join-201 ljune07.aspx, on
Jun. 7, 2011, 1 pg.

International Search Report and Written Opinion; EP Patent Office;
International Application No. PCT/US2013/047007; dated Oct. 22,
2013.

* cited by examiner

U.S. Patent Mar. 1, 2016 Sheet 1 of 15 US 9,277,168 B2

102 CAPTURE
— DEVICE >
13 e’
/ FIELD DATA
120 199
_/ 100
SUBFRAME y i
viorion | [bl
AP momon |32 136
> DETECTION !
SUBFRAME LOGIC
f—128 LEVEL
MOTION MAP
DATA,
CONTROL LOGIC 124
E.G. CPU -
eéﬁﬁggﬁg%sc REGISTER MOTION ADAPTIVE 138
' ' PROGRAMMING DE-INTERLACING /- >
DATA LOGIC INTERTED
PIXEL DATA
/-124
— >
REGISTER M.E MASK PROG
AND OTHER REG PROG
PREDEFINED |26 DE-INTERLACED
MASKS |[1F 106 FRAME N
(PROGRAMMH f‘ A v
-ABLE BY
CPU) . PROCESSING
/‘ 108 DEVICE (E.G. GPU)
122
F DISPLAY CONTROLLER W/ VIDEG
DE-NTERLACED INTERFACE
FRAME 110
PROGRESSIVE DISPLAY DEVICE |« s
SCALER

FIG. 1

U.S. Patent

Mar. 1, 2016 Sheet 2 of 15

(smar)

GENERATE A SUBFRAME LEVEL MOTION MAF
BASED ON AT LEAST A PORTION OF A
PLURALITY OF PREVIOUS FIELDS

Y

PRODUCE A PLURALITY OF MOTION VECTORS
ASSCOCIATED WITH THE SUBFRAME LEVEL
MOTION MAP BY APPLYING A PLURALITY
MOTION MASKS TO THE GENERATED
SUBFRAME LEVEL MOTION MAP

Y

GENERATE DE-INTERLACED CONTENT BY
ADAPTIVE INTERPCLATION BASED ON THE
PLURALITY OF MOTION VECTORS

208

¢
=

US 9,277,168 B2

202

204

208

U.S. Patent

Mar. 1, 2016 Sheet 3 of 15

US 9,277,168 B2

C Start)

/ 302

ACQUIRE AT LEAST 8 LINES OF A CURRENT FILED AND AT
LEAST 3 PREVIOUS FIELDS

l /- 304

GENERATE BIMODAL DATA FOR EACH POSITION
ASSOCIATED WITH A PIXEL iIN THE CURRENT FIELD BY
COMPARING THE LUMINANCE AND/OR CHROMINANCE

VALUE OF TEMPORAL DIFFERENCES BETWEEN PIXELS
ASSOCIATED WITH THE POSITION IN THE CURRENT
FIELD AND THE PREVIOUS FIELDS WITH A THRESHCLD

306

~

POPULATE THE SUBFRAME LEVEL MOTION MAP USING
THE GENERATED BIMODAL DATA

!

End

FIG. 3

U.S. Patent Mar. 1, 2016 Sheet 4 of 15 US 9,277,168 B2

VSYNC >
402 404 406 408
(’ (
FIELDy FIELDw F;E(_DN_1 CURRENT
FILED,
410 412 414 416 410 412 414 416
i e
I , / ;) /
%,,;
y y YO . S s
CORONO2ON N 418 420 422 424 (0.8){0.13(0.2(0.9) 418 420 422 424
a8 | [/ .
// / r/ / /
LOANA2 00 (10) (11 (1.2) (1,0)

410 412 414 418 .
)) / | 428

Fay 4 “

ey
Ly i { 9

0.0} (0.1 (0.2} 0.3)

418 420 422 424
/ ‘ ’ !

Jazs
o-lololo 4
122 {(10) (L) (1.2) (1.3}

THE SUBFRAME LEVEL
MOTION MAP

FIG. 4

US 9,277,168 B2

Sheet 5 of 15

Mar. 1, 2016

U.S. Patent

OOOBOFOCO® | i i
OQOROGOOO i
OCQGO0R0JOCGO0
OO0 OJGOTOD
(ol = Nell-Nells Nolls Mol s
OGO O0OJGOTOD
< oN=pel-oNs pensonsy
" booooqdooood
PQO0ODO0OQOOOoO0R
bOOoODOJOTOO
\v QoGO GoOoCOoOq i
3 b ooBoOdoBood i
boo®0go Sa
R.2.Q 020G e 4% o

o
]
)
o
4 0
o
512

Q
o
©}

o o
z0Z 52
1 05 w
N ¥
2AZE =50
Ve > &

FIG. 5

U.S. Patent Mar. 1, 2016 Sheet 6 of 15 US 9,277,168 B2

806
o 1 1 3 o | o | o | o | o
o | o 1 1 1 o | o | o | o
o | o 1 K o [o] o | o
o [o [o | 4 \1 1 o | o | 1 lso
o lololololololo] e}
o o Lol ol o] o 0
s o o lo o] o o] o] o
o | o | o ol o] o] o] o] o
o [o [o o o] o] o] o i
602
802
1 1 1 3 4 1 3 4 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 .
1 1 3 o [o [o] o] o] o
1 1 1 o [o | ol o] o] o
1 1 1 o L o] ol o] o] o
1 1 1 9/ o [o | o] o | o
1 1 1 o [o | ol o] o | o
4 ! ’ /a o | ol o] o | o
/
ade

F1G. 6

U.S. Patent Mar. 1, 2016 Sheet 7 of 15 US 9,277,168 B2

Start

702

SELECT A WINDOW SIZE FOR A SEARCH WINDOW TO BE CENTERED

ON THE PIXEL TO BE INTERPOLATED;

SELECT A PLURALITY OF PROGRAMMABLE MOTION MASKS FOR THE
SEARCH WINDOW

704

PRODUCE THE MOTION VECTORS BY COMBINING THE SUBFRAME
LEVEL MOTION MAP WITH THE PLURALITY OF SELECTED MOTION
MASKS

End

FIG. 7

U.S. Patent Mar. 1, 2016 Sheet 8 of 15 US 9,277,168 B2

A 602
7%
R 606
B 802 ¢ B E F G
- ﬁ - . H "
v s
H 804 J K L M
4 i
Pane B 5 B B B
\I
N 806 ¢ = Q R 8
- . - » o "
l‘f £
T 806 U ¥ W
<
B B B 7N |
AlB i' AlBI[H AlBIHIN
8 5 /ﬁ/ 4510 .
% Gares FIG. 8

MOTION MASKS

U.S. Patent Mar. 1, 2016 Sheet 9 of 15 US 9,277,168 B2

506 802
FIG. 9
{ 902
4 A
602~
e i L X1 978
608~ 3 _—
1
]
- 906
b 912
602~ Lg_jfi@ X2 ~918
]
e =7
602~

U.S. Patent Mar. 1, 2016

START

PRODUCE A MOTION
VALUE CORRESPONDING
TO THE PIXEL TO BE
INTERPOLATED BASED
ON THE MOTION
VECTORS

SPATIAL
INTERPGLATION

THE MOTION VALUE
INDICATES SPATIAL

1012 INTERPOLATIONT

DETERMINE THE ALPHA
COEFFICIENT BASED ON IMAGE
CHARACTERISTICS OF THE
VIDEC TO BE DEINTERLACED

!

1014

Sheet 10 of 15

US 9,277,168 B2
1002
TEMPORAL
INTERPOLATION
1110

C

INTERPOLATE THE PIXEL TO BE
INTERPOLATED BY COPYING ANY
CORRESPONDING PIXEL INTHE

PREVIOUS FIELDS

INTERPOLATE THE PIXEL TO BE
INTERPOLATED BY APPLYING
THE ALPHA COEFFICIENT TO THE
PIXEL TO BE INTERPOLATED IN A
SPATIAL METHOD (E.G. BOB, ELA}

Y

{ END)

FIG. 10

U.S. Patent Mar. 1, 2016 Sheet 11 of 15 US 9,277,168 B2

4 PIXEL WIDE X 4 FIELD DEEP = 256-BIT
) >
4 TEMPORAL PIXELS OF 2AME LOCATION FROM
LAST 4 FIELDS =64 BIT

- >

A 14-2-2 PIXEL = 16BIT (- 1102 (- 1104 (‘ 1106 (-11()8

PIn-310131 | Pin-210131 | -1l | Pirltoyal | =[Pin-alinion | Pin-2yioie | Pin-1101301 | PIniioNol
Pin-aH0N73 | Pin-23017 | Pin-1i71 | PLrtioN) e [Pin-ali1341 | Pin-2poial | PE- 11341 | PEitona)

P;n&}{om';}lp[n_z}m}ﬁ1]|P{.n-1}[1]{-s1} PO} 11] p=PIn-3101H8] | PIn-2HCH8] | PIn-11{1i8] | Pinlole]

Pin-2}0115] Pln-1L S PINO15] e PIn-31011123PIn-2HOH 1 2] PIn- 1 2) PInJiOH12]

PIn-21[01[15]

1line

h_. i6lines

[%3]

F-*[n—3}[15}{3}'?[;‘:-2}{‘;4}{3}|P{n—1}{15}[3] P 4131 =lPir-3u1si1 | Pin-2ii140) | Pin-1is501 | PlnIn4t0)

Pln-3 1817 IPIn-2Y 1 4R7IR - 11157 PIn14Y

~d

Fin-3H15]4] | Pin-2] 1434} | Pin-1][15H4}] Pinli14i{4]

Ple-31E B P In-23141 Pin- 1D 810 P4 T ==o - 3115381 | PIn-23014108] | PIn-1115181 | PIni[148]

Y pin-3i S0 sPin-2if 14l SPIn- SIS INHA1 8] o oy gy sy12pP -2 141 2P -1 S 120 P i 1 41128

S 1118

FIG. 11

US 9,277,168 B2

Sheet 12 of 15

Mar. 1, 2016

U.S. Patent

a a4 1510
a D
i a4 |80
i T
a1zt = < ona
GEAY Qwu -
mr % A g 92l [ARES] K!
, 97 A 18
Ut 4 1o
M i i |90
- a4 18D
P i |¥0
£8 ar "0'6 |60
79 T T8I0
'8 1l 1T T8N0
g |l 1T AR
M S-ptzt
AR AR ARARNEEN:
A T A I A B
gidi- ﬁmmgrwmmw -
o, (o o
! g
Zillgluld || Zilislli-uld 1] 21liglz-ulg | I2slielleulg |- foillsluls | [silisliuld | Ioilialie-uld | [silislisuld
77 falglfuld glislluig | glslz-ulg | [lislle-ulg |- [Lllslulg | Dolisliuld | Blieliz-uld | [ilislieuld
I Irllalulg lgli-ule | Wlsliz-uld || Blisllevld |~ [+liglluld elli-ulg | Dliglizula | [2lislie-uld
L Toligllld M,M%mmiwm | TolisHz-uld | folislle-ulg |- [eligliulg lelli-ulg | Ielglizvlg | [elislie-uld
2021 yo21 9021 §021 BV

US 9,277,168 B2

Sheet 13 of 15

Mar. 1, 2016

U.S. Patent

23 SAN 40 ON NO OO
o YOLYINWNOOY || CESYEVHAWY |, ONION3'd
75 B L8N AL 1OVEIXE VHIdY €1 'DOId
OL LT WHA OLYHITY
908 - '
WA a8 mmmm)ﬁ al
| 7 : logl 1 1 1oL ioeld
H0 i w izt 94z
MOONIA vel b T b T el i
$0Ei~{ HOMVIS 6XB ; | % % M www
§ - . , u
| leel i1 Lo L L 1 187 4F e
08 - 1 1 3w
mwmwm@m'/ ¢ ~ Mw — _ _ ~ “ w m mm m 3 MW AW 1 wwm
Joe ONY |, } e 4¥ 200
2 AW | 19X18 351 48 T T T T T e m% % &
gO8¢ il 5 | | w ” ¥ s
RMOCNIAR sl | 1 1 1 | | i¢8] i LS
POSI~ HOMYIS 6X6 3 1 1
fge] 1 T T T 1T 1 198} i i
o0es @ £ ir 4FE'8 180
™ ! 1 S f H 7 N,m N,m Nmu
< A S —— e LT
VAN | 18X18 TSI g LB A
/ o . 3 | [0 SR/
8054 r tegl 1 1 L e N 5124
MOANIA _, ST ¥ €41 207 LT 0L 67
FOSI~ HOMVIS 6Y8 2080 81 1 91 §1 ¥ €1 Z1 11 07

i

US 9,277,168 B2

Sheet 14 of 15

Mar. 1, 2016

U.S. Patent

DiSld WOOE — NO - OWIN 99 NO - INISQ ——
L L e uongodisu; weaung -
. »mmmmmm iz doj A0 -OYN 3y mm hzmwm ___ | 1aud Buejodisi o) 3pUdSRL0 S L7 i Oid
NG - SRENTY e mEmi\u_mm Em‘%u u
st — o
Wy (94N) oz - NOLLY- | L 01907 4|
(V1vQ — w {piowdgddgze) _ TOdUING | [T TOHINGD “ogu |0
ST AICH RN WY | ey g bty (VIAVS W
_JaNy e, .y Ll gl i gy
T V %MA@“ Avdiliziiul JOHBALOD “w“w“ ONLLHOEM
5508 e CIERTRTYN g hd il 224 YHAWY DOMd)N | eI NOIDETES
i - (peAsapRIrddaL) | e Bupualg | MEVW LS gy
S MINTCE e z W 1 eudyy NCILLOI "S0ud
¥ P%mﬁm-& 00T 90k
e T
{csINano um) [i
Aioussy (niomig adaze) e : NOILOW (NYHST Sdviy
MNP | il W i (IONTIAHIT 221
gt} : | NOILON
»| (poneapaiuidagl) | 1| +dipniz Ny e
eng | o A VNG | Tl llz-ult L adlpegl | s |
pieid - e-ulL L+l paizh-uly Ll .
peAesj sy SPINTND W) Tpeiglfe-ully el iziieul T ppg Zohi
3 (poreaal 01 Koot Tl | 0 | [T :
M QT _:a:sas:s:s;sas;s;:aaa:u ::::::: 1 iuz>m>
{ZEINATD) | | iousAu0 oo | JONASH | ecepe;
(PIOMOQOOGZE) et : Feond | aumden 15
g : &mmm.,z_g%w o0 S E iedps ozl el L MWM 0e0
01 0Zk } 2 Ll -
veki eer 200~ o a LIOLE

U.S. Patent Mar. 1, 2016 Sheet 15 of 15 US 9,277,168 B2

1504

KSQQ

MEMORY —>

IC FABRICATION SYSTEM

FI1G. 15

US 9,277,168 B2

1
SUBFRAME LEVEL LATENCY
DE-INTERLACING METHOD AND
APPARATUS

FIELD OF THE DISCLOSURE

The disclosure relates generally to methods and devices for
de-interlacing video for display on one or more progressive
displays and more particularly to methods and apparatus for
de-interlacing interlaced video using motion detection and/or
motion estimation techniques.

BACKGROUND OF THE DISCLOSURE

Interlacing is a well known technique that captures two
consecutive fields in succession at a rate twice a normal frame
rate. One of such consecutive fields contains only odd lines
and the other contains only even lines of a whole frame. In
other words, interlacing provides half-resolution fields at
twice the normal frame.

Progressive display devices display all lines of a frame at
every refresh. In order for progressive display devices to
display interlaced content, de-interlacing capability must be
added to assist progressive display devices. In theory, de-
interlacing would be as simple as combining two consecutive
interlaced fields into a single frame, which is generally known
as weaving in the art. However, interlaced fields are captured
at different points in time and thus weaving could cause
picture quality problem leading to visual defects when
motions exist in the picture. Such a picture quality problem is
called an interlace artifact. Blending is another technique that
averages consecutive fields to be displayed as one frame.
Likewise, blending also causes a de-interlacing artifact called
ghosting, where picture quality as well as the temporal reso-
Iution, i.e. motion, loses, albeitto a lesser degree as compared
to weaving.

Motion Adaptive De-interlace (MAD) is designed to over-
come interlace artifacts. MAD techniques typically enhance
picture qualities by incorporating weaving, blending and
frame extension methods, such as the “bob” as generally
known in the art. Specifically, MAD predicts direction and
amount of image motion between successive sub-fields to
blend the sub-fields together. As a result, MAD creates good
picture quality for progressive display.

Various applications based on MAD are well known in the
art. The existing MAD applications work based on differ-
ences of the pixels over a window of sum of the medians of
temporal or spatial pixels in a window to get the relative
motion across the pixels. Most of these applications estimate
the differences or standard deviations on the progressive
frames, i.e. previous interpolated frames, to detect the motion
movement and hence results in a minimum latency of one
frame to compute the interpolated pixels. They require stor-
age of progressive frames, which double the size of the inter-
laced field, and have computational delay to interpolate the
pixels for at least one progressive frame.

However, unnecessary latency resulting from traditional
MAD techniques may have negative impact on user experi-
ence. For example, addition of a de-interlacing feature to
support the high definition quality picture on progressive
displays in existing integrated circuit chips requires addi-
tional hardware added to the video data path; as a result, loss
of synchronization between audio and video can take place.
Also, in the case of video gaming applications, additional
de-interlacing hardware on the video data path could add

10

15

20

25

30

40

45

50

55

60

65

2

significant observable delay between the user commands and
video response such that the user gaming experience is
degraded.

Moreover, memory organization techniques associated
with traditional MAD typically use one frame buffer to store
the final interpolated frame and three field buffers to store
three past fields. Under such an approach, for example when
the pixels are captured in 4:4:4 format, the frame buffer has to
be stored in 4:4:4 AYCrCb8888 format. Accordingly, to store
the 720x480 size image, the traditional memory organization
techniques take memory storage of 720x480x32-bits i.e.
1382400 bytes. This memory storage cannot be optimized
because the downstream computing engine expects to receive
the pixel data in AY CrCb8888 format. In cases where some of
traditional MAD techniques perform 422 to 444 conversions
on the fly during the interpolation, 720x240x16 bit i.e.
345600 bytes, of memory storage are required to store 720x
240 YCbCr422, and therefore 4 fields of such require memory
storage of 1382400 bytes. The traditional MAD techniques
also typically organizes intermediate pixel data in a linear
mode, such that each field of pixel data are continuously
stored in a different field buffer. Under such an approach,
accessing pixel data in consecutive fields for a position asso-
ciated with the frame being interpolated requires multiple
memory access to different field buffers within the storage
buffer.

Therefore, there is a need for a solution to maintain de-
interlacing latency and memory accessing of intermediate
pixel data for interpolation at a minimum level to improve the
traditional MAD techniques.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the present disclosure together with the
advantages thereof, may be understood by reference to the
following description taken in conjunction with the accom-
panying drawings where:

FIG. 1is a block diagram generally depicting one embodi-
ment of a de-interlacing system de-interlacing interlaced
video for progressive display using subframe level motion
map information in accordance with the disclosure;

FIG. 2 is a flow diagram generally depicting a method of
adaptively de-interlacing interlaced video for progressive dis-
play using subframe level motion map information in accor-
dance with the disclosure;

FIG. 3 is a flow diagram generally illustrating a method for
generating the subframe level motion map in accordance with
one embodiment of the disclosure;

FIG. 4 generally illustrates in details one example of gen-
erating subframe level motion map as shown in FIG. 3;

FIG. 5 generally illustrates one example of generating sub-
frame level motion map at a latency of three lines and four
pixels in accordance with one embodiment of the disclosure;

FIG. 6 generally illustrates an example of generating a
subframe level motion map with in a 9x9 search window
associated with a pixel to be interpolated in accordance with
one embodiment of the disclosure;

FIG. 7 generally illustrates a flow diagram of a method for
producing motion vectors based on the subframe level motion
map in accordance with one embodiment of the disclosure;

FIG. 8 generally illustrates a block diagram of various
programmable motion masks within a search window asso-
ciated with a pixel to be interpolated in accordance with one
embodiment of the disclosure;

FIG. 9 generally illustrates a block diagram of generating
motion vectors in accordance with one embodiment of the
disclosure;

US 9,277,168 B2

3

FIG. 10 is a flow diagram generally illustrating a method
for adaptively interpolating the pixel to be interpolated in
accordance with one embodiment of the disclosure;

FIG. 11 generally illustrates one example of interleaving
field data organization for generating subframe level motion
map in accordance with one embodiment of the disclosure;

FIG. 12 generally illustrates one example of storing a sub-
frame level motion map from the interleaved field data orga-
nization as shown in FIG. 10;

FIG. 13 generally illustrates one example of accessing a
subframe level motion map from the interleaved field data
organization as shown in FIG. 11; and

FIG. 14 generally depicts in more details the de-interlacing
system as shown in FIG. 1;

FIG. 15 is a block diagram generally depicting one
embodiment of an integrated circuit fabrication system that
may fabricate an integrated circuit in accordance with the
disclosure.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

A method and apparatus for de-interlacing interlaced video
detects motion movement using a subframe level motion map
to generate progressive pixels of the missing lines in an inter-
laced field, having a subframe level latency. To achieve this,
the method and apparatus includes generating a subframe
level motion map based on at least a portion of a current field
(e.g. five lines) and at least a portion of a plurality of previous
fields (e.g. three fields). Once the subframe level motion map
is generated, the method and apparatus includes producing a
plurality of motion vectors associated with the subframe level
motion map by applying a plurality of motion masks associ-
ated with a pixel to be interpolated to the subframe level
motion map. The method further includes generating de-
interlaced video by adaptively interpolating the pixel to be
interpolated for the current field based on the plurality of
motion vectors produced.

Among other advantages, the method de-interlaces inter-
laced video with a processing delay in the order of lines
within a current field. In one example, the method uses one
current field and three previous fields to interpolate the miss-
ing pixels in the interlaced field with a processing latency of
5 lines, a significant shortened delay as compared to the
traditional MAD techniques. Thus, the method achieves a
subframe, i.e. less than one frame or field, processing level
latency.

In one embodiment, the method generates a subframe level
motion map by comparing the temporal differences for both
luminance and chrominance components of the pixels corre-
sponding to a portion of a current field being captured (e.g.
five lines) and a portion of a plurality of previous fields that
have been captured (e.g. three past fields). The absolute dif-
ferences for the luminance and chrominance components of
the pixels are compared with a threshold. Results of the lumi-
nance and chrominance comparison are marked using bimo-
dal data, such as Boolean. One of the bimodal data values is
used to indicate that relative motion for a pixel exists and the
other bimodal data value is used to indicate such motion does
not exist.

In another embodiment, the method generates two or more
motion vectors associated with a pixel to be interpolated, i.e.
a missing pixel, preferably by AND’ing the subframe level
motion map of temporal differences, e.g. the bimodal data
values indicating the luminance and chrominance differences
of the pixels, with a set of predefined motion masks within a
search window. The search window is selected according to

10

15

20

25

30

35

40

45

50

55

60

65

4

an optimal size, e.g. 9(lines)x9(pixels). This search window
is centered on the missing pixel. The motion masks can be
programmed by control logic in terms of the size, shape and
number. It is recognized that the algorithms to program the
motion masks as such are generally known in the art. Motion
vectors are preferably produced by OR’ing results of the
AND’ing operation to indicate whether motion exists in the
areas of interest selected by the predefined motion masks.
One of such bimodal data values indicates relative motion in
the neighboring pixels exists for the missing pixel. The other
of such bimodal data values indicates such relative motion
does not exist for the missing pixel. Further, a motion value is
preferably generated by OR’ing all the motion vectors to
indicate whether motion exists for the missing pixel within
the search area.

In another embodiment, the method generates de-inter-
laced video by adaptively interpolating the pixel to be inter-
polated for the current field based on the motion value, i.e.
determining whether to use spatial or temporal interpolation
to interpolate a missing pixel. If the motion value indicates
motion does not exist in the areas surrounding the missing
pixel within the search window, then temporal spatial inter-
polation is performed, e.g. copying captured pixels from pre-
vious fields. If the motion value indicates motion exists in the
areas surrounding the missing pixel within the search win-
dow, then spatial interpolation is performed, e.g. “BOB”,
“ELA” or other spatial algorithms as known in the art. Fur-
ther, in the case of spatial interpolation, alpha blending is also
preferably performed for the missing pixel and the level of
alpha blending for the missing pixel is determined based on
the number of motion vectors that indicate motion exist in
areas of interest selected by the predefined motion masks.

Also to minimize the processing delay for the method
above, methods related organizing and accessing field pixel
data in a single pixel domain are disclosed. The improvement
in accessing pixel data more efficiently as compared with
techniques used by traditional MAD is achieved by storing
the subframe level motion map in a memory storage, wherein
a corresponding array in the memory storage holds a line of
the subframe level motion map, and outputting the subframe
level motion map stored in the memory storage one array at a
time. The improvement in organizing pixel data as compared
with techniques used traditional MAD is achieved by storing
the plurality of pixels of the at least a portion of the current
field and the at least a portion of the plurality of previous fields
in a memory buffer by interleaving.

Among other advantages, the method and apparatus orga-
nizes and accesses field pixel data using interleaving memory
organization and efficient memory accessing technique.
Accordingly, the method and apparatus organizes and
accesses field pixel data facilitates interpolation of the pixels
with data flow operated in single clock domain in a pipeline
manner.

The following description of the embodiments is merely
exemplary in nature and is in no way intended to limit the
disclosure, its application, or uses. As used herein, the terms
“motion detection logic,” “motion de-interlacing logic,”
“logic,” “AND operation” “OR operation” and/or “device”
can include, as known in the art, electronic circuits, one or
more processors (e.g., shared, dedicated, or group of proces-
sors such as but not limited to microprocessors, DSPs, or
central processing units) and memory, that execute one or
more software or firmware programs, combinational logic
circuits, an ASIC, and/or other suitable components that pro-
vide the described functionality. Additionally, as known in the
art, the term “signal” may refer to one or more analog or
digital signals. Furthermore, as will be appreciated by those

US 9,277,168 B2

5

of ordinary skill in the art, the layout of a “motion detection
logic” “motion de-interlacing logic” “AND operation” “OR
operation” and/or “device” can be described in a hardware
description language such as Verilog™, VHDL, and/or other
suitable hardware description languages.

FIG. 1 shows generally one example of a subframe level
latency motion adaptive de-interlacer 100 operative to per-
form adaptive de-interlacing at a subframe level in accor-
dance with one embodiment of the method described above.
The subframe level latency motion adaptive de-interlacer 100
includes motion detection logic 132 and motion adaptive
de-interlacing logic 134. It is noted that motion detection
logic 132 and motion adaptive de-interlacing logic 134
referred to herein are any suitable executing software module,
hardware, executing firmware or any suitable combination
thereof that can perform the desired function, such as pro-
grammed processors, discrete logic, for example, state
machine, to name a few. It is also understood that, although
motion detection logic 132 and motion adaptive de-interlac-
ing logic 134 are illustrated in this example as discrete to each
other, in some other examples they may be combined to form
integrated logic operative to detect motion values associated
with a missing pixel and as well as interpolated the missing
pixel based on the motion values.

Also shown are a memory storage 120, which contains a
subframe level motion map 122, and control logic 128 that
controls a register 124. The register 124 contains predefined
motion masks 126. In this example, the subframe level
latency motion adaptive de-interlacer 100 receives captured
field data 130 from a capturing device 102, such as a camera,
game console, or any other suitable device that can capture
interlaced video stream as known in the art.

In this example, the motion detection logic 132 is operative
to identify moving areas in the fields to be de-interlaced. The
motion detection logic 132 generates a subframe level motion
map 122 based on the current captured field data 130 and
previous field data 136 stored in the frame buffer 104. Further
details of the subframe level motion map generated by the
motion detection logic 132 are described in FIGS. 3-6. As
shown, the subframe level motion map 122 is stored in the
memory 120, which may be any suitable storage device as
generally known in the art. In this example, the motion detec-
tion logic 132 is also operative to produce motion vectors
associated with each missing pixel, a motion value for each
missing pixel based on the motion vectors, and Alpha coeffi-
cient for Alpha blending. In one example, the motion detec-
tion logic 132 produces motion vectors associated with a
missing pixel by combining the subframe level motion map
122 with a plurality of predefined motion masks 126. The
predefined motion masks 126 are preferably programmed by
control logic 128 and are stored in a register 124 controlled by
the control logic 128. The control logic 128 may program
predefined motion masks 126 by defining, for example, sizes,
shapes or any other suitable parameters associated with pro-
gramming motion masks for MAD as generally known in the
art. In addition, the control logic 128 may also control the
subframe level latency motion adaptive de-interlacer 100, for
example, by enabling or disabling the subframe level latency
motion adaptive de-interlacer 100. It is noted that the control
logic 128 referred to herein is any suitable executing software
module, hardware, executing firmware or any suitable com-
bination thereof that can perform the above-described func-
tion, such as programmed processors, discrete logic, for
example, state machine, to name a few.

In this example, the motion detection logic 132 is also
operative to produce motion values associated with missing
pixels. Motion values can be used to indicate whether motion

10

15

20

25

30

35

40

45

50

55

60

65

6

exists in areas of interest selected by the predefined motion
masks 126. Based on the motion values produced by the
motion detection logic 132, the motion de-interlacing logic
134 is operative to adaptively de-interlace field to be inter-
laced by applying temporal or spatial, such as but not limited
to, “BOB” and “ELLA”, interpolation and by alpha blending.
Further details of the adaptive de-interlacing operation per-
formed by the motion de-interlacing logic 134 are described
in FIG. 11.

As still shown in this example, the subframe level latency
motion adaptive de-interlacer 100 is also operative to output
interpolated field data 138 to a frame buffer 104 operatively
coupled to the subframe level latency motion adaptive de-
interlacer 100. Also shown, a processing device 106, such as
a graphics processor unit (GPU), is operative to receive from
frame buffer 104 the de-interlaced frames. In this example,
the processing device 106 is further operative to process the
de-interlaced frames using a display controller 108 having a
scaler 110, or any other suitable or equivalent device as
known in the art to perform display controlling and/or scaling
functions. As also shown, the processing device 106 is also
operative to send the processed de-interlaced frames to the
progressive display device 122 for display as progressive
frames.

Referring to FIGS. 1-2, the operation of the de-interlacer
100 will be explained. At block 202, in operation, the motion
detection logic 132 generates a subframe level motion map
based on at least a portion of a current field and at least a
portion of a plurality of previous fields. At block 204, in
operation, the motion detection logic 132 further produces a
plurality of motion vectors associated with the subframe level
motion map by applying a plurality of motion masks, associ-
ated with a pixel to be interpolated, to the subframe level
motion map. Proceeding to block 206, based on the plurality
of motion vectors produced by the motion detection logic
132, the motion adaptive de-interlacing logic 132 generates
deinterlaced content by adaptively interpolating the pixel to
be interpolated for the current field. It is understood that
although the various methods described herein have been
described as being performed by certain functional blocks,
that any suitable function block may perform the requisite
steps as desired depending on a particular application.

FIGS. 3-6, in combination with FIG. 1, illustrate further
details of generating a subframe level motion map in accor-
dance with one embodiment of the method described above.
Referring to FIG. 3, an example of generating a subframe
level motion map is illustrated. At block 302, in operation, the
motion detection logic 132 acquires at least three previous
fields and at least five lines of a current field. At block 304, for
each position associated with a pixel in the current field, the
motion detection logic 132 generates a bimodal value, e.g.
Boolean value, by comparing luminance and/or chrominance
value of temporal differences between pixels associated with
the position in the current field and the previous fields with a
threshold. One example of such a comparison is illustrated in
FIG. 4. Proceeding to block 306, the motion detection logic
132 populates the subframe level motion map using the gen-
erated bimodal data for each position associated with a pixel
in the current field.

FIG. 4 illustrates one example of the operations described
in FIG. 3. In this example, the current field, 408 and the
previous field, _, 404 contain even lines of a frame, such as the
line 428. The previous field, ;402 and field, ; 406 contain
odd lines of the frame, such as the line 426. As shown, four
positions 410, 412, 414, 416, are on the line 426 in the frame.
As shown, four positions 418, 420, 422, 424, are on the line
428 in the frame. The shaded pixels, as shown, represent that

US 9,277,168 B2

7

the luminance and/or chrominance values of such pixels are
different from non-shaded pixels as compared to a threshold
generally known in the art. The temporal luminance and/or
chrominance differences between pixels associated with
positions 410, 412, 414, 416, 418, 420, 422, 424 are marked
using bimodal data, such as Booleans. In this example, the
Boolean value “1” represents the temporal luminance and/or
chrominance difference exists for a position in the frame and
the Boolean value “0” indicates such a difference doesn’t
exist. As shown, the differences are populated to the subframe
level motion map 122 on a subframe level. In this example,
luminance and/or chrominance difference at position 410 is
marked by the Boolean value “0” as pixels associated the
position 410 in field,, ;402 and field,, ;406 are not shaded, i.e.
their luminance and/or chrominance difference is not greater
than the threshold. On the other hand, in this example, lumi-
nance and/or chrominance difference at position 412 is
marked by the Boolean value “1” as the pixel associated the
position 412 in field,, ;402 is shaded and the pixel associated
the position 412 in field,, ;406 is not shaded, i.e. their lumi-
nance and/or chrominance difference is greater than the
threshold. Similarly, other positions can be marked by bimo-
dal data in this fashion. As shown, the positions 410,412, 414,
416 on the line 426 are marked by 0, 1, 1, O respectively to
indicate the luminance and/or chrominance difference of the
pixels associated with these positions. Likewise, the positions
418, 420, 422, 424 on the line 428 are marked by 0, 0, 0, 0
respectively. The bimodal data are then populated in the
motion map 122, as shown, at each position corresponding to
the position in the frame.

One example of generating each odd line bit F, , and even
line bit F,,; for the subframe level motion map 122 may be
represented by the following equations.

{F, =1} If ((IField,_3 Y(n)-Field,_, ¥(n)|>Threshold__
Y)\(Field, 3C(n)-Field, ,C(n)>Threshold_C))
Else {F,;=0}

{F,>=1} If ((IField,, Y(n)-Field, ¥(n) >Threshold__¥)
MField, ,C(n)-Field, C(#)I>Threshold__C)) Else
{F.=0}

As shown, the temporal luminance and/or chrominance
differences are calculated as the pixels of the current field
Field,, 408 comes in. Accordingly only two comparators are
needed when operating at pixel clock. In one embodiment, the
Cb and Cr components are used for the temporal difference
calculation. The difference is OR’ed with the Y difference and
kept as a single map. However, as known in the art, the
chrominance difference needs a different threshold than the Y
component.

Now referring to FIG. 5, the relationships among captured
pixels, pixels to be interpolated, currently being interpolated
pixel and the currently being received pixel are illustrated. As
shown, the current field 500 comprises captured pixels such
as pixel 502, which has already been captured and goes to
final frame buffer 104 because it does not need to be interpo-
lated. The captured pixel 502 also goes to an interleaved field
buffer, which is described in further details in FIG. 11, for
interpolation of pixels yet to be interpolated such as pixel 512.
Pixel 504 represents one of the pixels that were missing in the
current field 500 but have been interpolated already. Pixel 506
is the pixel that is currently being either spatially or temporal
interpolated based on the motion determination within a 9x9
search window 510, which is described in details in FIG. 6.
Pixel 510 will go to the final frame buffer 104 once interpo-
lated. Pixel 508 is the pixel that is currently being captured
and goes to the final frame buffer 104. As seen from the
position relationship between the pixel currently being cap-

10

15

20

25

30

35

40

45

50

55

60

65

8

tured 508 and the pixel currently being interpolated 506 in
this example, the latency between the currently captured pixel
and the currently being interpolated pixel is three lines plus
four pixels multiplying the pixel clock frequency of the cap-
turing device.

FIG. 6 illustrates an example of a search window. In this
example, the 9(line)x9(pixel) search window 602 is centered
on two representative pixels to be interpolated, e.g. pixel 606
and 608. Itis noted that the size of a search window can be any
combination of lines and pixels, e.g. 2x2, 3x3, 5x9 and so on.
However, a bigger search window tends to produce better
motion detection for the missing pixel than a smaller search
window. The search area 610 represents one of possible
search areas within the search window 602. To determine
whether motion associated with the pixel to be interpolated
606 exists, areas of interest, such as search area 610, are
combined with corresponding portions of the subframe level
motion map. The result is a combination map with single bit
Boolean value, i.e. “0” or “1”, associated with each position
in the search area. Motion vectors can be preferably generated
by OR’ing each of the bits in the combination map as shown.
In this example, search area 610 has some “1”’s and therefore
motion exists in search area 610. Also shown in FIG. 6 is
search area 604, within which the pixels are all marked “0”,
and therefore no motion exists in the search area 604.

FIG. 7 illustrates an example of producing motion vectors
associated with a subframe motion map. At block 702, in
operation, the method of producing a plurality of motion
vectors associated with the subframe level motion map by
applying a plurality of motion masks, associated with a pixel
to be interpolated, to the subframe level motion map includes
selecting a window size for a search window, e.g. search
window 510, to be centered on the pixel to be interpolated.
FIGS. 8-9 will illustrate further details of producing motion
vectors and motion value associated with the pixel currently
being interpolated in accordance with one embodiment of the
method described above. Referring back to FIG. 7, block 704
shows the method further includes selecting a plurality of
programmable motion masks for the search window. At block
706, the method further includes producing the motion vec-
tors by combining the subframe level motion map with the
plurality of selected motion masks.

FIG. 8, in combination with FIG. 6, illustrates one example
different masks of different shapes and sizes may be selected
for a pixel to be interpolated, i.e. pixel 606. The various
shaded areas shown in FIG. 8 represent many possible motion
masks within a search window 602. Motion masks 802, 804,
806, 810, are 4 examples of such. Motion masks 802, 804,
806, 810 may be selected based on, for example, the sizes,
shapes and number of motion masks associated with a pixel to
be interpolated for different applications as generally known
in the art. In this example, as shown, motion masks 802, 804,
806 and 810 are selected such that they cover the search area
610.

FIG. 9, in combination with FIGS. 6 and 8, illustrates one
example of producing the motion vectors in accordance with
one embodiment of the method described in block 706. As
shown, the motion masks 802, 804, 806 and 810 are associ-
ated with pixel 606. Each of them covers an area of interest
within the search window 602. Also as shown, each bit in the
subframe level motion map 122 in the area of interest, i.e. an
area covered by a motion mask, is AND’ed, with the corre-
sponding bit of the motion mask. For clarity of illustrating
this example, such AND operations are not depicted in FIG. 9.
Take motion mask 802 for example, line 922 is a representa-
tive result of AND’ing one of the bits in the subframe level
motion map 122 covered by the motion mask 802 with the

US 9,277,168 B2

9

corresponding bit the motion mask 802. As shown, such
results like 922 are OR’ed together by an OR operation, such
as 902, 904, 906 and 908. The result of each OR operation is
OR’ed together again to produce a multiple of motion vec-
tors, i.e. 916, 918 and 920. It is noted the operation repre-
sented by 902, 904, 906, 908, 916, 918, 920 and described
herein elsewhere may be implemented by any suitable cir-
cuitry or logic as known in the art.

The follow equations state the OR operations described in
another way:

X1=OR(SUBFRAME_LEVEL_MOTION_MAP[i//j]
AND MASK_AREA_ 0fi]i])

X2=OR(SUBFRAME_LEVEL_MOTION_MAP[i//j]
AND MASK_AREA_1£i]fi])

X3=OR(SUBFRAME_LEVEL_MOTION_MAP[i//j]
AND MASK_AREA_ 2/ifi])

Xn=OR(SUBFRAME_LEVEL_MOTION_MAP
AND MASK_AREA_ nfijfi]),

Where (i,j) denotes each position covered by the motion
mask within a search window

FIG. 10 illustrates an example of generating de-interlaced
content by adaptively interpolating a missing pixel in accor-
dance with the disclosure herein. At block 1002, the process
may include producing a motion value corresponding to the
pixel to be interpolated, i.e. the missing pixel, based on the
motion vectors produced by the motion detection logic 132.
This may be preferably done by OR’ing all the motion vectors
associated with areas of interest selected by predefined
motion masks within a search window, but it may also be done
by any other suitable operations known in the art. As an
illustration, referring to FIG. 6, the motion value for the area
of interest, i.e. the search area 610 is “1” when all the bits in
that area are OR’ed together to produce the motion value,
which indicates that pixel 606 is surrounded by moving areas.
Likewise, the motion value for the area of interest 604 is O,
which indicates pixel 608 is surrounded by static areas.

Referring back to FIG. 10, Block 1004 shows generating
de-interlaced content by adaptively interpolating the pixel to
be interpolated may further include determining whether to
spatially or temporally interpolate the pixel to be interpolated
based on the motion value. For example, if the motion value
indicates that the pixel to be interpolated is surrounded by
static areas, temporal operation, e.g. copying captured and
stored pixels from previous fields, may be performed to inter-
polate the missing pixel, as shown in block 1110. If the
motion value indicates that the pixel to be interpolated is
surrounded by moving areas, spatial interpolation, e.g.
“BOB” or “ELA”, along with alpha blending may be per-
formed to interpolate the missing pixel.

In the case when the motion value indicates spatial inter-
polation is needed, block 1012 shows generating de-inter-
laced content by adaptively interpolating the pixel to be inter-
polated further includes determining the alpha coefficient
based on image characteristics of the video to be de-inter-
laced. The alpha coefficient determination may be made
based on number of motion vectors are matched, i.e. indicat-
ing motion, for areas of interest associated with a pixel to be
interpolated selected by predefined motion masks, or any
other suitable techniques known in the art. For example, the
value of alpha coefficient can be anywhere from 1 (total
motion), 0.9, 0.8 . . . to 0 (no motion). Between 0 and 1, the
alpha coefficient values may be linear or non-linear in relation

10

15

20

25

30

35

40

45

50

55

60

65

10

to the number of motion vectors matched. As an illustration,
an example where four motion vectors x1, x2, x3, x4 are
generated for areas of interest associated with a missing pixel
is provided below. If x1 . . . 4 are all marked as “1”, then the
value of alpha coefficient is set to “1”. If any 3 of the 4 vectors
are 1 then the alpha coefficient is set to 0.8. If none of the 4
vectors are 1 the there is no motion at all, the Alpha coefficient
is set to 0. Alpha coefficient value may be linear or non-linear
and its step size can be decided based on the image charac-
teristics. The following equations may be used, for example,
for a linear determination in relation to the number of motion
vectors matched:

Alpha=0, if 2(Xi)==0, fori=0 . . . n, i.e. all Motion Vectors
are 0, Alpha is set to 0

Alpha=1, it 2(Xi)==N, fori=0. . . n, i.e. all Motion Vectors
are 1, Alpha is setto 1

Alpha=0.1, if 0<Z(X7)<N/10, fori=0...n
Alpha=0.2, if M10<Z(Xi)<2*N/10, fori=0...n
Alpha=0.3, if 2*N10<Z(Xi)<3*N/10, fori=0 ... n
Alpha=0.4, if 3*N10<Z(Xi)<4*N/10, fori=0 ... n
Alpha=0.3, if 4*N/10<Z(Xi)<5*N/10, fori=0 ... n
Alpha=0.6, if S*N/10<Z(Xi)<6*N/10, fori=0 ... n
Alpha=0.7, if 6*N10<Z(Xi)<7T*N/10, fori=0 ... n
Alpha=0.8, if 7*N10<Z(Xi)<8*N/10, fori=0...n

Alpha=0.9, if 8*N/10<S(Xi)<9*N/10, for i=0. . . n

Once the Alpha coefficient is determined when spatial
interpolation is needed as indicated by the motion value,
block 1014 shows generating de-interlaced content by adap-
tively interpolating the pixel to be interpolated further
includes interpolating the pixel to be interpolated by applying
the alpha coefficient to the pixel to be interpolated in a spatial
interpolation method. For example, the value for the missing
pixel P,(i,j) can be calculated as P,(i,j)=(alpha*P,(i,j) (spa-
tial))+((1-alpha)*(P,_; (i,j)), where P, (i,j) is the pixel being
interpolated using spatial algorithms such as “BOB”, “ELA”,
or “modified ELA” or other spatial interpolation algorithms
as generally known in the art, and P, _,(I,)) is the temporal
pixel from previously received field of the same polarity,
where the line corresponds to that pixel is stored in frame
buffer. As an illustration, in the case when “BOB” is used,
PG, is (P,(i-1,)+P (i+1,)))/2.

FIG. 11 illustrates an example of the method generating a
subframe level motion map based on at least a portion of a
current field and at least a portion of a plurality of previous
fields may include a memory organization of the subframe
level motion map by storing the plurality of pixels of the at
least a portion of the current field and the at least a portion of
the plurality of previous fields in a memory buffer by inter-
leaving. As shown in FIG. 11, four temporal pixels of the
same position from four consecutive fields, e.g. pixels 1102,
1104, 1106 and 1108, are arranged in an interleaving mode in
memory storage. For example, in such an interleaving model,
pixel 1102 from Field, 5, pixel 1104 from Field, ,, pixel 1106
from Field,, ; and pixel 1108 from Field, are stored in con-
secutive memory locations in memory storage 1110. Unlike
the linear memory organization used by traditional MAD
techniques, the interleaving technique organizes the interme-
diate pixel data in this way such that memory access for
intermediate pixel data for calculating the missing pixel can

US 9,277,168 B2

11

be minimized. Accordingly, when implemented, the inter-
leaving memory organization of intermediate pixel data
requires less design area, i.e. the area required to implement
read/write clients, than the linear memory organization, e.g.
the continuous field buffer, used by the traditional MAD
techniques. Another advantage with this memory organiza-
tion scheme is that design can fetch the required pixels from
previous fields in a field buffer in single pixel clock and hence
very simple control state machine can be designed to have a
pipelined processing of pixels. Accordingly, this memory
organization scheme leads to less implementation area of
control state machine.

FIG. 12 illustrates one example of generating a subframe
level motion map based on at least a portion of a current field
and at least a portion of a plurality of previous fields may
include storing the subframe level motion map in a memory
storage, wherein a corresponding array in the memory storage
holds a line of the subframe level motion map. As shown in
this example, 1214 is a 16x9 memory storage, e.g. a SRAM,
or any other suitable storage device known in the art suitable
to store intermediate pixel data for MAD calculations. The
memory storage 1214 is organized such that it can hold nine
lines of single bit value in a subframe level motion map at any
time. For instance, memory storage 1214 can hold a subframe
level motion map of 16-pixels in a line, which is written to
memory storage 1214 vertically, i.e. each line of memory
storage 1214 holds a column of a subframe level motion map.
Accordingly, the nine horizontal columns in the memory
storage 1214 hold nine lines of 16-pixels in a subframe level
motion map. In this example, pixel 1202 is the pixel being
currently captured in a current field. Pixel 1202 has a position
of (8,8) in the current field. Pixel 1206 is the another pixel
associated with position (8,8) from field, ,. The difference
calculated according to method described above is shown as
1212, which is populated in the corresponding location 1218
in the 16x9 memory storage 1214. Similarly, pixel 1204 and
1208 are associated with position (9,8) and their difference
1210 is populated in the location 1216 in the 16x9 memory
storage 1214.

FIG. 13 illustrates one example of generating a subframe
level motion map based on at least a portion of a current field
and at least a portion of a plurality of previous fields may
further include outputting the subframe level motion map
stored in the memory storage one array at a time to produce
motion vectors for Alpha blending. As shown, values of a
subframe level motion map are read from the memory storage
1214 to generate motion vectors and perform Alpha coeffi-
cient computation as described above. In this example, 1302
is a shifter that can read one line, i.e. a column in a subframe
level motion map, in a 9x9 window of single bit map, such as
a subframe level motion map, i.e. one column in the memory
storage 1214, in one pixel clock. Now referring to FIG. 5, to
interpolate a next missing pixel in a row in a 9x9 window, the
9%9 bit map window is right shifted by one column and
requires next bit map corresponding to the next column (e.g.
bit map row 0f 1216-1218 in FIG. 12) to be fetched. Accord-
ingly, as shown, for every pixel clock, each column in the
memory storage 1214 is read according to a search window,
such as search window 1304, to generate motion vectors, such
as motion vector 1308 through bit-wise operations, such as
1306, in accordance with the method described above. Also
shown in this example, each of the resulting motion vectors
are sent to an N-bit accumulator 1310 for the calculation of
the number of motion vectors that are matched, i.e. motion
detected. The number is sent to the alpha blending logic for
further processing, such as calculating the Alpha coefficient
as described above.

25

40

45

55

12

FIG. 14 illustrates one embodiment of an apparatus that
that performs adaptive de-interlacing at a subframe level
using a subframe level motion map and shows in greater
details one example of subframe level latency motion adap-
tive de-interlacer 100. Also shown in this example, a capture
device 102 comprises a capture interface 1402 and control
logic 1404. The control logic 1404 is operative to control the
data path of captured field data. It is noted that the control
logic 1404 may be implemented using any suitable structure
including software, hardware, firmware or suitable combina-
tion thereof. In this example, the captured field data is written
to a final field buffer 1426 in the frame buffer 104 by a write
client 1424 via an arbiter 1420. Because in this example, the
capture interface 1402 captures field data in 4:2:2 format, a
4:2:2-4:4:4 convertor 1422 converts the captured 4:2:2 field
data into 4:4:4 format ready to be displayed. As shown, the
control logic 1404 also is operative to send the captured field
data to an interleaved field buffer 1110 in the frame buffer 104
by a write client 1436 via the arbiter 1420.

As shown in this example, the subframe level latency
motion adaptive de-interlacer 100 includes motion detection
circuitry 1423 and motion de-interlacing circuitry 1425. The
motion detection circuitry 1423 is operative to receive field
data in the currently captured field from the capture device
1402 via the capture control logic 1404. The motion detection
circuitry 1423 is also operative to receive previously captured
field data in the past fields from the interleaved field buffer
1110 via a read client 1428. The motion detection circuitry
1423 is further operative to generate subframe level motion
map 122 in accordance with the method described above. The
motion detection circuitry 1423 is further operative to pro-
duce motion vectors in accordance with the method described
above. Further, the motion detection circuitry 1423 is opera-
tive to calculate motion value and Alpha coefficient in accor-
dance with the method described above. In addition, the
motion detection circuitry 1423 is operative to communicate
with the control logic 128, which is operative to program
patterns of predefined motion masks in the motion mask
selection register 126, such as sizes and shapes, via a register
interface 1410. The control logic 128 is also operative to
enable or disable the subframe level latency motion adaptive
de-interlacer 100. This may be done, for example, through a
switching operating functionally shown as multiplexor 1412,
1414 and 1416.

As also shown in this example, the motion de-interlacing
circuitry 1425 is operative to adaptively de-interlace field to
be interlaced by applying temporal de-interlacing, e.g. copy
missing pixel from previous fields, to static areas and/or
applying spatial de-interlacing, such as “BOB” or “ELA” or
other spatial interpolation algorithms as known in the art, to
moving areas, based on the motion vectors and motion values
generated by the motion detection circuitry 1423. The motion
de-interlacing circuitry 1425 includes an Alpha blending
logic 1406 that is operative to receive motion determination,
e.g. motion vectors and motion values, from the motion detec-
tion circuitry 1423. The Alpha blending logic 1406 is opera-
tive to determine whether to temporally or spatially interpo-
late the missing pixels in accordance with the method
described above. This may be done, for example, through a
switching operating functionally shown as multiplexor 1416.
In the case of spatial operation, spatial interpolation circuitry
1408 is operative to receive field data from interleaved field
buffer 1110 via read client 1430 as well as from the final field
buffer 1426 via read client 1432. The spatial interpolation
circuitry 1408 is further operative to interpolate the missing
pixels using spatial interpolation algorithms, such as “BOB”,
“ELA”, or “modified ELA” in accordance with the method

US 9,277,168 B2

13

described above. Once spatial interpolation is done for the
missing pixel, the spatial interpolation circuitry 1408 is
operative to send the spatially interpolated pixel value for
alpha blending to the Alpha blending logic 1406. The Alpha
blending logic 1406 is operative to receive previous field data
from the interleave field buffer 1110 via the read client 1430.
In accordance with the Alpha blending method described
above, the Alpha blending logic 1406 is operative to perform
Alpha blending for the pixels to be interpolated and send the
final interpolated pixels to the final field buffer 1426 via write
client 1434.

As shown in FIG. 15, an integrated circuit fabrication sys-
tem 1500 is shown which may include access to memory
1502 which may be in any suitable form and any suitable
location accessible via the web, accessible via hard drive or
any other suitable way. The memory 1502 is a non-transitory
computer readable medium such as but not limited to RAM,
ROM and any other suitable memory. The IC fabrication
system may be or ore more work stations that control a wafer
fabrication to build integrated circuits. The memory 1502
may include thereon instructions that when executed by one
or more processors cause the integrated circuit fabrication
system to fabricate an integrated circuit that includes the logic
described herein.

The disclosed integrated circuit designs may be employed
in any suitable apparatus including but not limited to, for
example, game consoles, printers, high definition televisions,
handheld devices, such as smart phones, tablets, portable
devices such as laptops or any other suitable device. Such
devices may include for example, a display that is operatively
coupled to the integrated circuit where the integrated circuit
may be, for example, a GPU, CPU or any other suitable
integrated circuit that provides image data for output on the
display. Such an apparatus may employ the integrated circuits
as noted above for output on the displays. Such an apparatus
may employ the integrated circuits as noted above including
active memory circuit and memory state backup circuits as
described as well as one or more of the described configura-
tions.

Also, integrated circuit design system (e.g. work stations
including, as known the art, one or more processors, associ-
ated memory in communication via one or more buses or
other suitable interconnected and other known peripherals)
are known that create wafers with integrated circuits based on
executable instructions stored on a computer readable
medium such as but not limited to CDROM, RAM, other
forms of ROM, hard drives, distributed memory, etc. The
instructions may be represented by any suitable language
such as but not limited to hardware descriptor language
(HDL), Verilog or other suitable language. As such, the logic
and circuits described herein may also be produced as inte-
grated circuits by such systems using the computer readable
medium with instructions stored therein. For example, an
integrated circuit with the aforedescribed logic and structure
may be created using such integrated circuit fabrication sys-
tems. In such a system, the computer readable medium stores
instructions executable by one or more integrated circuit
design systems that cause the one or more integrated circuit
design systems to produce an integrated circuit. the integrated
circuit includes logic operative to generate a subframe level
motion map based on at least a portion of a current field and
at least a portion of plurality of previous fields, produce a
plurality of motion vectors associated with the subframe level
motion map by applying a plurality of motion masks, associ-
ated with a pixel to be interpolated, to the subframe level
motion map, and generate deinterlaced content by adaptively
interpolating the pixel to be interpolated for the current field

10

15

20

25

30

35

40

45

50

55

60

65

14

based on the plurality of motion vectors produced by applying
aplurality of motion masks to the subframe level motion map.

Advantages of the above method and apparatus include,
but are not limited to, a shortened subframe level, i.e. less than
one frame, latency for interlaced field to be de-interlaces,
enhanced memory organization, and efficient accessing of
intermediate field pixel data. The subframe level latency is
achieved by efficiently generating and using a subframe level
motion map to detect motion for each missing pixel within a
search window centered on the missing pixel. In the case
when a 9x9 search window is used, the latency is maintained
at (3 lines+4 pixel) latency level. Accordingly, the above
method and apparatus de-interlace interlaced video with a
processing delay in the order of lines within a current field. In
addition, memory organization and access of intermediate
field pixel data for MAD calculation are enhanced such that
interleaving organization and efficient accessing of interme-
diate field pixel data are achieved. It is recognized that such
enhancement facilitates interpolating the pixels using data
flow that is operated with single clock domain in a pipeline
manner, which improves the efficiency of MAD operations.

The above detailed description of the method and appara-
tus and examples described therein have been presented for
the purposes of illustration and description only and not by
limitation. It is therefore contemplated that the present
method and apparatus cover any and all modifications, varia-
tions or equivalents that fall within the spirit and scope of the
basic underlying principles disclosed above and claimed
herein.

What is claimed is:

1. A method, carried out by a device, for deinterlacing
interlaced content comprising:

generating a subframe level motion map based on at least a

portion of a current field and at least a portion of a
plurality of previous fields;

producing a plurality of motion vectors associated with the

subframe level motion map by applying a plurality of
motion masks, associated with a pixel to be interpolated,
to the subframe level motion map; and
generating deinterlaced content by adaptively interpolat-
ing the pixel to be interpolated for the current field based
on the plurality of motion vectors produced by applying
aplurality of motion masks to the subframe level motion
map.
2. The method of claim 1 wherein generating a subframe
level motion map comprises:
acquiring at least a portion of the current field and at least
a portion of the plurality of previous fields;

generating bimodal data for each position associated with
a pixel in the current field, wherein one bimodal value
indicates motion detected for the position and the other
bimodal value indicates motion not detected for the posi-
tion, by comparing the luminance and/or chrominance
value of temporal differences between pixels associated
with the position in the current field and the plurality of
the previous fields with a threshold; and

populating the subframe level motion map using the gen-

erated bimodal data.

3. The method of claim 2, wherein capturing at least a
portion of the current field and at least a portion of the plu-
rality of previous fields further comprises:

acquiring at least three previous fields and at least five lines

in the current field.

4. The method of claim 1 wherein producing a plurality of
motion vectors associated with the subframe level motion

US 9,277,168 B2

15

map by applying a plurality of motion masks, associated with
a pixel to be interpolated, to the subframe level motion map
comprises:

selecting a window size for a search window to be centered

on the pixel to be interpolated;

selecting a plurality of programmable motion masks for the

search window; and

producing the motion vectors by combining the subframe

level motion map with the plurality of selected motion
masks.
5. The method of claim 4 wherein the plurality of motion
masks are programmable using a control logic to select the
size and/or the shape of the plurality of motion masks.
6. The method of claim 4 wherein the plurality motion
masks in combination cover all pixels in the search window.
7. The method of claim 1, wherein generating a subframe
level motion map based on at least a portion of a current field
and at least a portion of a plurality of previous fields com-
prises:
storing the subframe level motion map in a memory stor-
age, wherein a corresponding array in the memory stor-
age holds a line of the subframe level motion map; and

outputting the subframe level motion map stored in the
memory storage one array at a time.

8. The method of claim 2 wherein acquiring at least a
portion of a current field and at least a portion of a plurality of
previous fields comprises:

obtaining a plurality of pixels of the at least a portion of a

current field and the at least a portion of a plurality of
previous fields from a first memory buffer;

storing the plurality of pixels of the at least a portion of the

current field and the at least a portion of the plurality of
previous fields in a second memory buffer by interleav-
ing; and

retrieving the interleaved pixels from the second memory

buffer.

9. The method of claim 1 further comprising:

processing the deinterlaced content using a processing

unit; and

providing a visual display of deinterlaced video based on

the processed deinterlaced content provided by the pro-
cessing unit.

10. The method of claim 1 wherein generating deinterlaced
video by adaptively interpolating the pixel to be interpolated
comprises:

producing a motion value corresponding to the pixel to be

interpolated based on the motion vectors;
determining whether to spatially or temporally interpolate
the pixel to be interpolated based on the motion value;

in response to a motion value indicating the pixel to be
interpolated spatially, determining the alpha coefficient
based on image characteristics of the video to be dein-
terlaced; and

interpolating the pixel to be interpolated by applying the

alpha coefficient to the pixel to be interpolated in a
spatial algorithm, when the motion value indicates to
interpolate the pixel to be interpolated spatially, or inter-
polating the pixel to be interpolated by copying any
corresponding pixel in the previous fields, when the
motion value indicates to interpolate the pixel to be
interpolated temporally.

11. A de-interlacer operative to de-interlace interlaced con-
tent comprising:

motion detection circuitry operative to generate a subframe

level motion map based on at least a portion of a current
field and at least a portion of a plurality of previous
fields; and

15

20

25

30

35

40

45

50

55

60

65

16

operative to produce a plurality of motion vectors associ-
ated with the subframe level motion map by applying a
plurality of motion masks, associated with a pixel to be
interpolated, to the subframe level motion map; and

de-interlacing circuitry operative to generate deinterlaced
content by adaptively interpolating the pixel to be inter-
polated for the current field based on the plurality of
motion vectors produced by applying a plurality of
motion masks to the subframe level motion map.
12. The de-interlacer of claim 11 wherein generating a
subframe level motion map comprises:
acquiring at least a portion of the current field and at least
a portion of the plurality of previous fields;

generating bimodal data for each position associated with
a pixel in the current field, wherein one bimodal value
indicates motion detected for the position and the other
bimodal value indicates motion not detected for the posi-
tion, by comparing the luminance and/or chrominance
value of temporal differences between pixels associated
with the position in the current field and the plurality of
the previous fields with a threshold; and

populating the subframe level motion map using the gen-

erated bimodal data.

13. The de-interlacer of claim 12 wherein capturing at least
a portion of the current field and at least a portion of the
plurality of previous fields further comprises:

acquiring at least three previous fields and at least five lines

in the current field.

14. The de-interlacer in claim 11 wherein producing a
plurality of motion vectors associated with the subframe level
motion map by applying a plurality of motion masks, associ-
ated with a pixel to be interpolated, to the subframe level
motion map comprises:

selecting a window size for a search window to be centered

on the pixel to be interpolated;

selecting a plurality of programmable motion masks for the

search window; and

producing the motion vectors by combining the subframe

level motion map with the plurality of selected motion
masks.

15. The de-interlacer of claim 14 wherein the plurality of
motion masks are programmable by a control logic.

16. The de-interlacer in claim 14 wherein the plurality
motion masks in combination cover all pixels in the search
window.

17. The de-interlacer of claim 11, wherein generating a
subframe level motion map based on at least a portion of a
current field and at least a portion of a plurality of previous
fields comprises:

storing the motion map in a memory storage, wherein a

corresponding array in the memory storage holds a line
of the subframe level motion map; and

outputting the motion map in the memory storage one array

at a time.

18. The de-interlacer of claim 12 wherein acquiring at least
a portion of a current field and at least a portion of a plurality
of previous fields comprises:

obtaining a plurality of pixels of the at least a portion of a

current field and the at least a portion of a plurality of
previous fields from a first memory buffer;

storing the plurality of pixels of the at least a portion of the

current field and the at least a portion of the plurality of
previous fields in a second memory buffer by interleav-
ing; and

retrieving the interleaved pixels from the second memory

buffer.

US 9,277,168 B2

17

19. The de-interlacer of claim 11 wherein generating dein-
terlaced video by adaptively interpolating the pixel to be
interpolated comprises:

producing a motion value corresponding to the pixel to be

interpolated based on the motion vectors;
determining whether to spatially or temporally interpolate
the pixel to be interpolated based on the motion value;

in response to the motion value indicating interpolate the
pixel to be interpolated spatially, determining the alpha
coefficient based on image characteristics of the video to
be deinterlaced; and

interpolating the pixel to be interpolated by applying the

alpha coefficient to the pixel to be interpolated in a
spatial algorithm, when the motion value indicates to
interpolate the pixel to be interpolated spatially, or inter-
polating the pixel to be interpolated by copying any
corresponding pixel in the previous fields, when the
motion value indicates to interpolate the pixel to be
interpolated temporally.

20. An apparatus comprising:

a de-interlacer operative to de-interlace interlaced content

comprising:

motion detection circuitry operative to generate a sub-
frame level motion map based on at least a portion of
a current field and at least a portion of a plurality of
previous fields; and operative to produce a plurality of
motion vectors associated with the subframe level
motion map by applying a plurality of motion masks,
associated with a pixel to be interpolated, to the sub-
frame level motion map; and

de-interlacing circuitry operative to generate deinter-
laced content by adaptively interpolating the pixel to
be interpolated for the current field based on the plu-
rality of motion vectors produced by applying a plu-
rality of motion masks to the subframe level motion
map;

a processing device operative to process deinterlaced con-

tent generated by the deinterlacer; and

a display device operative to display processed deinter-

laced video provided by the processing unit.

21. A non-transitory computer readable storage medium
comprising executable instructions that when executed
causes an integrated circuit fabrication system to fabricate an
integrated circuit that comprises logic operative to:

generate a subframe level motion map based on at least a

portion of a current field and at least a portion of a
plurality of previous fields;

produce a plurality of motion vectors associated with the

subframe level motion map by applying a plurality of
motion masks, associated with a pixel to be interpolated,
to the subframe level motion map; and

generate deinterlaced content by adaptively interpolating

the pixel to be interpolated for the current field based on

5

20

30

35

40

50

18

the plurality of motion vectors produced by applying a
plurality of motion masks to the subframe level motion
map.
22. The non-transitory of computer readable storage
medium of claim 21, wherein generating a subframe level
motion map comprises:
acquiring at least a portion of the current field and at least
a portion of the plurality of previous fields;

generating bimodal data for each position associated with
a pixel in the current field, wherein one bimodal value
indicates motion detected for the position and the other
bimodal value indicates motion not detected for the posi-
tion, by comparing the luminance and/or chrominance
value of temporal differences between pixels associated
with the position in the current field and the plurality of
the previous fields with a threshold; and

populating the subframe level motion map using the a

result.

23. The non-transitory of computer readable storage
medium of claim 21, wherein producing a plurality of motion
vectors associated with the subframe level motion map by
applying a plurality of motion masks, associated with a pixel
to be interpolated, to the subframe level motion map com-
prises:

selecting a window size for a search window to be centered

on the pixel to be interpolated;

selecting a plurality of programmable motion masks for the

search window; and

producing the motion vectors by combining the subframe

level motion map with the plurality of selected motion
masks.
24. The non-transitory of computer readable storage
medium of claim 21, wherein generating a subframe level
motion map based on at least a portion of a current field and
at least a portion of a plurality of previous fields comprises:
storing the subframe level motion map in a memory stor-
age, wherein a corresponding array in the memory stor-
age holds a line of the subframe level motion map; and

outputting the subframe level motion map stored in the
memory storage one array at a time.

25. The non-transitory of computer readable storage
medium of claim 22, wherein acquiring at least a portion of a
current field and at least a portion of a plurality of previous
fields comprises:

obtaining a plurality of pixels of the at least a portion of a

current field and the at least a portion of a plurality of
previous fields from a first memory buffer;

storing the plurality of pixels of the at least a portion of the

current field and the at least a portion of the plurality of
previous fields in a second memory buffer by interleav-
ing; and

retrieving the interleaved pixels from the second memory

buffer.

